Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Opt Express ; 32(5): 6887-6902, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439384

RESUMO

Laser speckle contrast imaging (LSCI) has gained significant attention in the biomedical field for its ability to map the spatio-temporal dynamics of blood perfusion in vivo. However, LSCI faces difficulties in accurately resolving blood perfusion in microvessels. Although the transmissive detecting geometry can improve the spatial resolution of tissue imaging, ballistic photons directly transmitting forward through tissue without scattering will cause misestimating in the flow speed by LSCI because of the lack of a quantitative theoretical model of transmissvie LSCI. Here, we develop a model of temporal LSCI which accounts for the effect of nonscattered light on estimating decorrelation time. Based on this model, we further propose a dual-exposure temporal laser speckle imaging method (dEtLSCI) to correct the overestimation of background speed when performing traditional transmissive LSCI, and reconstruct microvascular angiography using the scattered component extracted from total transmitted light. Experimental results demonstrated that our new method opens an opportunity for LSCI to simultaneously resolve the blood vessels morphology and blood flow speed at microvascular level in various contexts, ranging from the drug-induced vascular response to angiogenesis and the blood perfusion monitoring during tumor growth.


Assuntos
Angiografia , Imagem de Contraste de Manchas a Laser , Microvasos/diagnóstico por imagem , Perfusão , Lasers
2.
Sci Robot ; 9(87): eadh1978, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381838

RESUMO

Micro/nanorobotic swarms consisting of numerous tiny building blocks show great potential in biomedical applications because of their collective active delivery ability, enhanced imaging contrast, and environment-adaptive capability. However, in vivo real-time imaging and tracking of micro/nanorobotic swarms remain a challenge, considering the limited imaging size and spatial-temporal resolution of current imaging modalities. Here, we propose a strategy that enables real-time tracking and navigation of a microswarm in stagnant and flowing blood environments by using laser speckle contrast imaging (LSCI), featuring full-field imaging, high temporal-spatial resolution, and noninvasiveness. The change in dynamic convection induced by the microswarm can be quantitatively investigated by analyzing the perfusion unit (PU) distribution, offering an alternative approach to investigate the swarm behavior and its interaction with various blood environments. Both the microswarm and surrounding environment were monitored and imaged by LSCI in real time, and the images were further analyzed for simultaneous swarm tracking and navigation in the complex vascular system. Moreover, our strategy realized real-time tracking and delivery of a microswarm in vivo, showing promising potential for LSCI-guided active delivery of microswarm in the vascular system.


Assuntos
Imagem de Contraste de Manchas a Laser , Robótica , Fluxometria por Laser-Doppler/métodos , Fluxo Sanguíneo Regional
3.
J Biomed Opt ; 29(1): 016009, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38283936

RESUMO

Significance: Laser speckle contrast imaging (LSCI) is a real-time wide-field technique that is applied to visualize blood flow in biomedical applications. However, there is currently a lack of relevant research to demonstrate that it can measure velocities over a wide dynamic range (WDR), which is critical for monitoring much higher and more pulsatile blood flow in larger size myocardial vessels, such as the coronary artery bypass graft, and visualizing the spatio-temporal evolution of myocardial blood flow perfusion in cardiac surgery. Aim: We aim to demonstrate that the LSCI technique enables measuring velocities over a WDR from phantom experiments to animal experiments. In addition, LSCI is preliminarily applied to imaging myocardial blood flow distribution in vivo on rabbits. Approach: Phantom and animal experiments are performed to verify that the LSCI method has the ability to measure blood velocities over a wide range. Our method is also validated by transit time flow measurement, which is the gold standard for blood flow measurement in cardiac surgery. Results: Our method is demonstrated to measure the blood flow over a wide range from 0.2 to 635 mm/s. To validate the phantom results, the varying blood flow rate from 0 to 320 mm/s is detected in the rat carotid artery. Additionally, our technique also obtains blood flow maps of different myocardial vessels, such as superficial large/small veins, veins surrounded by fat, and myocardial deeper arteriole. Conclusions: Our study has the potential to visualize the spatio-temporal evolution of myocardial perfusion in coronary artery bypass grafting, which would be of great benefit for future research in the life sciences and clinical medicine.


Assuntos
Hemodinâmica , Imagem de Contraste de Manchas a Laser , Ratos , Animais , Coelhos , Velocidade do Fluxo Sanguíneo , Fluxo Sanguíneo Regional/fisiologia , Veias , Fluxometria por Laser-Doppler/métodos
4.
J Biophotonics ; 17(3): e202300394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38169143

RESUMO

The early detection and pathological classification of brain edema are very important for symptomatic treatment. The dual-optical imaging system (DOIS) consists of intrinsic optical signal imaging (IOSI) and laser speckle contrast imaging (LSCI), which can acquire cerebral hemodynamic parameters of mice in real-time, including changes of oxygenated hemoglobin concentration ( Δ C HbO 2 ), deoxyhemoglobin concentration (ΔCHbR) and relative cerebral blood flow (rCBF) within the field of view. The slope sum of Δ C HbO 2 , ΔCHbR and rCBF was proposed to classify vasogenic edema (VE) and cytotoxic edema (CE). The slope sum values in the VE and CE group remain statistically different and the classification results provide higher accuracy of more than 93% for early brain edema detection. In conclusion, the differences of hemodynamic parameters between VE and CE in the early stage were revealed and the method helps in the classification of early brain edema.


Assuntos
Edema Encefálico , Imagem de Contraste de Manchas a Laser , Camundongos , Animais , Edema Encefálico/diagnóstico por imagem , Imagem Óptica/métodos , Hemodinâmica , Circulação Cerebrovascular , Edema/diagnóstico por imagem
5.
Acta Neurochir (Wien) ; 166(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261093

RESUMO

Adenosine induced cardiac arrest (AiCA) is one of the methods used to facilitate microsurgical aneurysm clipping by providing more visibility and less pressure in the aneurysmal sac and neighboring vessels. We report the use of laser speckle contrast imaging (LSCI) during AiCA to monitor the changes in pulsation and perfusion on the cortical surface during adenosine induced cardiac arrest for aneurysm clipping surgery. Application of this technology for perfusion monitoring may improve workflow and surgical guidance and provide valuable feedback continuously throughout the procedure. ClinicalTrials.gov identifier: NCT0502840.


Assuntos
Aneurisma , Imagem de Contraste de Manchas a Laser , Humanos , Perfusão , Adenosina , Parada Cardíaca Induzida
6.
Sci Rep ; 14(1): 1735, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242903

RESUMO

The use of various blood flow control methods in neurovascular interventions is crucial for reducing postoperative complications. Neurosurgeons worldwide use different methods, such as contact Dopplerography, intraoperative indocyanine videoangiography (ICG) video angiography, fluorescein angiography, flowmetry, intraoperative angiography, and direct angiography. However, there is no noninvasive method that can assess the presence of blood flow in the vessels of the brain without the introduction of fluorescent substances throughout the intervention. The real-time laser-speckle contrast imaging (LSCI) method was studied for its effectiveness in controlling blood flow in standard cerebrovascular surgery cases in rat common carotid arteries, such as proximal occlusion, trapping, reperfusion, anastomosis, and intraoperative vessel thrombosis. The real-time LSCI method is a promising method for use in neurosurgical practice. This approach allows timely diagnosis of intraoperative disturbance of blood flow in vessels in cases of clip occlusion or thrombosis. Additionally, LSCI allows us to reliably confirm the functioning of the anastomosis and reperfusion after removal of the clips and thrombolysis in real time. An unresolved limitation of the method is noise from movements, but this does not reduce the value of the method. Additional research is required to improve the quality of the data obtained.


Assuntos
Verde de Indocianina , Trombose , Ratos , Animais , Imagem de Contraste de Manchas a Laser , Corantes , Angiofluoresceinografia
9.
Biomed Phys Eng Express ; 10(2)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38109789

RESUMO

Purpose.Accurately visualizing and measuring blood flow is of utmost importance in maintaining optimal health and preventing the onset of various chronic diseases. One promising imaging technique that aids in visualizing perfusion in biological tissues is Multi-exposure Laser Speckle Contrast Imaging (MELSCI). MELSCI technique allows real-time quantitative measurements using multiple exposure times to obtain precise and reliable blood flow data. Additionally, the application of machine learning (ML) techniques can further enhance the accuracy of blood flow prediction in this imaging modality.Method.Our study focused on developing and evaluating Ensemble Learning ML techniques along with clustering algorithms for predicting blood flow rates in MELSCI. The effectiveness of these techniques was assessed using performance parameters, including accuracy, F1-score, precision, recall, specificity, and classification error rate.Result.Notably, the study revealed that Ensemble Learning with clustering emerged as the most accurate technique, achieving an impressive accuracy rate of 98.5%. Furthermore, it demonstrated a high recall of more than 91%, F1-score, the precision of more than 90%, higher specificity of 99%, and least classification error of 1.5%, highlighting its suitability and sustainability for flow prediction in MELSCI.Conclusion.The study's findings imply that Ensemble Learning can significantly contribute to enhancing the accuracy of blood flow prediction in MELSCI. This advancement holds substantial promise for healthcare professionals and researchers, as it facilitates improved understanding and assessment of perfusion within biological tissues, which will contribute to the maintenance of good health and prevention of chronic diseases.


Assuntos
Hemodinâmica , Imagem de Contraste de Manchas a Laser , Humanos , Algoritmos , Aprendizado de Máquina , Doença Crônica
10.
Sci Rep ; 13(1): 17270, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828222

RESUMO

Accurate intraoperative assessment of parathyroid blood flow is crucial to preserve function postoperatively. Indocyanine green (ICG) angiography has been successfully employed, however its conventional application has limitations. A label-free method overcomes these limitations, and laser speckle contrast imaging (LSCI) is one such method that can accurately detect and quantify differences in parathyroid perfusion. In this study, twenty-one patients undergoing thyroidectomy or parathyroidectomy were recruited to compare LSCI and ICG fluorescence intraoperatively. An experimental imaging device was used to image a total of 37 parathyroid glands. Scores of 0, 1 or 2 were assigned for ICG fluorescence by three observers based on perceived intensity: 0 for little to no fluorescence, 1 for moderate or patchy fluorescence, and 2 for strong fluorescence. Speckle contrast values were grouped according to these scores. Analyses of variance were performed to detect significant differences between groups. Lastly, ICG fluorescence intensity was calculated for each parathyroid gland and compared with speckle contrast in a linear regression. Results showed significant differences in speckle contrast between groups such that parathyroids with ICG score 0 had higher speckle contrast than those assigned ICG score 1, which in turn had higher speckle contrast than those assigned ICG score 2. This was further supported by a correlation coefficient of -0.81 between mean-normalized ICG fluorescence intensity and speckle contrast. This suggests that ICG angiography and LSCI detect similar differences in blood flow to parathyroid glands. Laser speckle contrast imaging shows promise as a label-free alternative that overcomes current limitations of ICG angiography for parathyroid assessment.


Assuntos
Verde de Indocianina , Glândulas Paratireoides , Humanos , Glândulas Paratireoides/diagnóstico por imagem , Glândulas Paratireoides/cirurgia , Imagem de Contraste de Manchas a Laser , Angiografia , Perfusão
12.
Burns ; 49(8): 1907-1915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863755

RESUMO

OBJECTIVE: To develop a color code and to investigate the validity of Laser Speckle Contrast Imaging (LSCI) for measuring burn wound healing potential (HP) in burn patients as compared to the reference standard Laser Doppler Imaging (LDI). METHOD: A prospective, observational, cohort study was conducted in adult patients with acute burn wounds. The relationship between mean flux measured with LDI and mean perfusion units (PU) measured with LSCI was expressed in a regression formula. Measurements were performed between 2 and 5 days after the burn wound. The creation of a LSCI color code was done by mapping the clinically validated color code of the LDI to the corresponding values on the LSCI scale. To assess validity of the LSCI, the ability of the LSCI to discriminate between HP < 14 and ≥ 14 days and HP < 21 and original ≥ 21 days according to the LDI reference standard was evaluated, with calculation of receiver operating characteristics (ROC) curves. RESULTS: A total of 50 patients were included with a median age of 40 years and total body surface area burned of 6%. LSCI values of 143 PU and 113 PU were derived as the cut-off values for the need of conservative treatment (HP < 14 and ≥ 14 days) resp. surgical closure (HP < 21 and ≥ 21 days). These LSCI cut off values showed a good discrimination between HP 14 days versus ≥ 14 days (Area Under Curve (AUC)= 0.89; sensitivity 85% and specificity = 82%) and a good discrimination between HP 21 days versus ≥ 21 days (AUC of 0.89, sensitivity 81% and specificity 88%). CONCLUSION: This is the first study in which a color code for the LSCI in adult clinical burn patients has been developed. Our study reconfirms the good performance of the LSCI for prediction of burn wound healing potential. This provides additional evidence for the potential value of the LSCI in specialized burn care.


Assuntos
Queimaduras , Pele , Adulto , Humanos , Queimaduras/diagnóstico por imagem , Queimaduras/terapia , Estudos de Coortes , Imagem de Contraste de Manchas a Laser , Fluxometria por Laser-Doppler/métodos , Lasers , Estudos Prospectivos , Pele/diagnóstico por imagem
13.
Sci Rep ; 13(1): 17970, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864006

RESUMO

Laser speckle contrast imaging (LSCI) is a rapidly developing technology broadly applied for the full-field characterization of tissue perfusion. Over the recent years, significant advancements have been made in interpreting LSCI measurements and improving the technique's accuracy. On the other hand, the method's precision has yet to be studied in detail, despite being as important as accuracy for many biomedical applications. Here we combine simulation, theory and animal experiments to systematically evaluate and re-analyze the role of key factors defining LSCI precision-speckle-to-pixel size ratio, polarisation, exposure time and camera-related noise. We show that contrary to the established assumptions, smaller speckle size and shorter exposure time can improve the precision, while the camera choice is less critical and does not affect the signal-to-noise ratio significantly.


Assuntos
Imagem de Contraste de Manchas a Laser , Extremidade Superior , Animais , Simulação por Computador , Fluxometria por Laser-Doppler/métodos , Fluxo Sanguíneo Regional
14.
Surg Endosc ; 37(12): 9139-9146, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37814165

RESUMO

INTRODUCTION: Intraoperative perfusion imaging may help the surgeon in creating the intestinal anastomoses in optimally perfused tissue. Laser speckle contrast imaging (LSCI) is such a perfusion visualisation technique that is characterized by dye-free, real-time and continuous imaging. Our aim is to validate the use of a novel, dye-free visualization tool to detect perfusion deficits using laparoscopic LSCI. METHODS: In this multi-centre study, a total of 64 patients were imaged using the laparoscopic laser speckle contrast imager. Post-operatively, surgeons were questioned if the additional visual feedback would have led to a change in clinical decision-making. RESULTS: This study suggests that the laparoscopic laser speckle contrast imager PerfusiX-Imaging is able to image colonic perfusion. All images were clear and easy to interpret for the surgeon. The device is non-disruptive of the surgical procedure with an average added surgical time of 2.5 min and no change in surgical equipment. The potential added clinical value is accentuated by the 17% of operating surgeons indicating a change in anastomosis location. Further assessment and analysis of both white light and PerfusiX perfusion images by non-involved, non-operating surgeons showed an overall agreement of 80%. CONCLUSION: PerfusiX-Imaging is a suitable laparoscopic perfusion imaging system for colon surgery that can visualize perfusion in real-time with no change in surgical equipment. The additional visual feedback could help guide the surgeons in placing the anastomosis at the most optimal site.


Assuntos
Laparoscopia , Imagem de Contraste de Manchas a Laser , Humanos , Estudos Prospectivos , Intestinos/diagnóstico por imagem , Intestinos/cirurgia , Perfusão , Imagem de Perfusão/métodos , Fluxo Sanguíneo Regional
15.
Lasers Surg Med ; 55(8): 784-793, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555246

RESUMO

OBJECTIVES: Normothermic machine perfusion (NMP) provides a platform for pre-transplant kidney quality assessment that is essential for the use of marginal donor kidneys. Laser speckle contrast imaging (LSCI) presents distinct advantages as a real-time and noncontact imaging technique for measuring microcirculation. In this study, we aimed to assess the value of LSCI in visualizing renal cortical perfusion and investigate the additional value of dual-side LSCI measurements compared to single aspect measurement during NMP. METHODS: Porcine kidneys were obtained from a slaughterhouse and then underwent NMP. LSCI was used to measure one-sided cortical perfusion in the first 100 min of NMP. Thereafter, the inferior renal artery branch was occluded to induce partial ischemia and LSCI measurements on both ventral and dorsal sides were performed. RESULTS: LSCI fluxes correlated linearly with the renal blood flow (R2 = 0.90, p < 0.001). After renal artery branch occlusion, absence of renal cortical perfusion could be visualized and semiquantified by LSCI. The overall ischemic area percentage of the ventral and dorsal sides was comparable (median interquartile range [IQR], 38 [24-43]% vs. 29 [17-46]%, p = 0.43), but heterogenous patterns between the two aspects were observed. There was a significant difference in oxygen consumption (mean ± standard deviation [SD], 2.57 ± 0.63 vs. 1.83 ± 0.49 mLO2 /min/100 g, p < 0.001), urine output (median [IQR], 1.3 [1.1-1.7] vs. 0.8 [0.6-1.3] mL/min, p < 0.05), lactate dehydrogenase (mean ± SD, 768 ± 370 vs. 905 ± 401 U/L, p < 0.05) and AST (mean ± SD, 352 ± 285 vs. 462 ± 383 U/L, p < 0.01) before and after renal artery occlusion, while no significant difference was found in creatinine clearance, fractional excretion of sodium, total sodium reabsorption and histological damage. CONCLUSIONS: LSCI fluxes correlated linearly with renal blood flow during NMP. Renal cortical microcirculation and absent perfusion can be visualized and semiquantified by LSCI. It provides a relative understanding of perfusion levels, allowing for a qualitative comparison between regions in the kidney. Dual-side LSCI measurements are of added value compared to single aspect measurement and renal function markers.


Assuntos
Rim , Imagem de Contraste de Manchas a Laser , Suínos , Animais , Velocidade do Fluxo Sanguíneo , Rim/diagnóstico por imagem , Rim/fisiologia , Perfusão/métodos , Fluxometria por Laser-Doppler/métodos
16.
Biosensors (Basel) ; 13(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37622902

RESUMO

Modern smartphones have been employed as key elements in point-of-care (POC) devices due to remarkable advances in their form factor, computing, and display performances. Recently, we reported a combination of the smartphone with a handheld endoscope using laser speckle contrast imaging (LSCI), suggesting potential for functional POC endoscopy. Here, we extended our work to develop a smartphone-combined multifunctional handheld endoscope using dual-wavelength LSCI. Dual-wavelength LSCI is used to monitor the changes in dynamic blood flow as well as changes in the concentration of oxygenated (HbO2), deoxygenated (Hbr), and total hemoglobin (HbT). The smartphone in the device performs fast acquisition and computation of the raw LSCI data to map the blood perfusion parameters. The flow imaging performance of the proposed device was tested with a tissue-like flow phantom, exhibiting a speckle flow index map representing the blood perfusion. Furthermore, the device was employed to assess the blood perfusion status from an exteriorized intestine model of rat in vivo during and after local ischemia, showing that blood flow and HbO2 gradually decreased in the ischemic region whereas hyperemia and excess increases in HbO2 were observed in the same region right after reperfusion. The results indicate that the combination of LSCI with smartphone endoscopy delivers a valuable platform for better understanding of the functional hemodynamic changes in the vasculatures of the internal organs, which may benefit POC testing for diagnosis and treatment of vascular diseases.


Assuntos
Imagem de Contraste de Manchas a Laser , Smartphone , Animais , Ratos , Diagnóstico por Imagem , Hemodinâmica , Imagens de Fantasmas
17.
BMC Surg ; 23(1): 261, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37649010

RESUMO

BACKGROUND/PURPOSE: Real-time quantification of tissue perfusion can improve intraoperative surgical decision making. Here we demonstrate the utility of Laser Speckle Contrast Imaging as an intra-operative tool that quantifies real-time regional differences in intestinal perfusion and distinguishes ischemic changes resulting from arterial/venous obstruction. METHODS: Porcine models (n = 3) consisted of selectively devascularized small bowel loops that were used to measure the perfusion responses under conditions of control/no vascular occlusion, arterial inflow occlusion, and venous outflow occlusion using laser speckle imaging and indocyanine green fluoroscopy. Laser Speckle was also used to assess perfusion differences between small bowel antimesenteric-antimesenteric and mesenteric-mesenteric anastomoses. Perfusion quantification was measured in relative perfusion units calculated from the laser speckle perfusion heatmap. RESULTS: Laser Speckle distinguished between visually identified perfused, watershed, and ischemic intestinal segments with both color heatmap and quantification (p < .00001). It detected a continuous gradient of relative intestinal perfusion as a function of distance from the stapled ischemic bowel edge. Strong positive linear correlation between relative perfusion units and changes in mean arterial pressure resulting from both arterial (R2 = .96/.79) and venous pressure changes (R2 = .86/.96) was observed. Furthermore, Laser Speckle showed that the antimesenteric anastomosis had a higher perfusion than mesenteric anastomosis (p < 0.01). CONCLUSIONS: Laser Speckle Contrast Imaging provides objective, quantifiable tissue perfusion information in both color heatmap and relative numerical units. Laser Speckle can detect spatial/temporal differences in perfusion between antimesenteric and mesenteric borders of a bowel segment and precisely detect perfusion changes induced by progressive arterial/venous occlusions in real-time.


Assuntos
Laparoscopia , Doenças Vasculares , Suínos , Animais , Imagem de Contraste de Manchas a Laser , Perfusão , Intestinos , Artérias
18.
J Biophotonics ; 16(9): e202300108, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37260409

RESUMO

We proposed a novel method to separate static and dynamic speckles based on spatial frequency domain filtering. First, the raw speckle image sequence is processed frame by frame through 2D Fourier transform, low-pass and high-pass filtering in the spatial frequency domain, and inverse Fourier transform. Then, we can obtain low- and high-frequency image sequences in the spatial domain. Second, we averaged both sequences in the time domain. After the above processing, we obtain the mean intensities of the dynamic and static speckle components in the spatial domain. Finally, we calculated the time-averaged modulation depth to map the 2-D blood flow distribution. Both phantom and vivo experiments demonstrated that the proposed method could effectively suppress the background non-uniformity and has the advantage of high computational efficiency. It also can effectively improve image contrast, contrast-to-noise ratio, and imaging dynamic range.


Assuntos
Algoritmos , Imagem de Contraste de Manchas a Laser , Diagnóstico por Imagem , Imagens de Fantasmas , Hemodinâmica
20.
Clin Physiol Funct Imaging ; 43(4): 211-222, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37020404

RESUMO

Skin tissue holds a prominent role in microcirculatory research as an easily accessible vascular bed for the noninvasive evaluation of microvascular function. Skin microvascular changes have been associated to alterations in distinct target organs and vascular beds, reinforcing the hypothesis that skin microcirculation can be used as a model of generalized microvascular function. In addition, skin microvascular dysfunction has been documented in cardiovascular disease and patients of increased cardiovascular risk where it has been associated with multiple cardiovascular risk factors, rendering it a candidate surrogate marker of vascular damage. Laser speckle contrast imaging (LSCI) is a noninvasive, dynamic laser technique that allows assessment of skin microvascular function (SMF) by obtaining two-dimensional maps of the skin perfusion in real time with high spatial and temporal resolution and, most importantly, with the highest reproducibility compared to other laser methods. An ever-increasing number of studies using LSCI is confirming evidence of impaired SMF in several cardiovascular risk groups, therefore expanding its application in microvascular research and showing its potential clinical utility. This review attempts to present the growing importance of SMF in cardiovascular research and the emergence of LSCI technique as a robust imaging modality with a promising role to explore skin microvascular physiology. After a short description of the relevant technique and its main principle of function, we have also opted to present the most up to date studies using LSCI for the investigation of SMF in patients with cardiovascular disease as well as various groups of increased cardiovascular risk.


Assuntos
Doenças Cardiovasculares , Humanos , Microcirculação/fisiologia , Doenças Cardiovasculares/diagnóstico por imagem , Imagem de Contraste de Manchas a Laser , Reprodutibilidade dos Testes , Fatores de Risco , Pele/diagnóstico por imagem , Pele/irrigação sanguínea , Fluxometria por Laser-Doppler/métodos , Fluxo Sanguíneo Regional , Velocidade do Fluxo Sanguíneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...